Topographic Transformation as a Discrete Latent Variable
نویسندگان
چکیده
Invariance to topographic transformations such as translation and shearing in an image has been successfully incorporated into feedforward mechanisms, e.g., "convolutional neural networks", "tangent propagation". We describe a way to add transformation invariance to a generative density model by approximating the nonlinear transformation manifold by a discrete set of transformations. An EM algorithm for the original model can be extended to the new model by computing expectations over the set of transformations. We show how to add a discrete transformation variable to Gaussian mixture modeling, factor analysis and mixtures of factor analysis. We give results on filtering microscopy images, face and facial pose clustering, and handwritten digit modeling and recognition.
منابع مشابه
Voice Morphing Using the Generative Topographic Mapping
In this paper we address the problem of Voice Morphing. We attempt to transform the spectral characteristics of a source speakers speech signal so that the listener would believe that the speech was uttered by a target speaker. The voice morphing system transforms the spectral envelope as represented by a Linear Prediction model. The transformation is achieved by codebook mapping using the Gen...
متن کاملGTM: The Generative Topographic Mapping
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis, which is based on a linear transformation between the latent space and the data space. In this article, we introduce a form of nonlinear latent variable model called the generative topographic mappi...
متن کاملGTM : The Generative Topographic Mapping 21
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping...
متن کاملDesign Space Reduction in Optimization Using Generative Topographic Mapping
1. Abstract Dimension reduction in design optimization is an extensively researched area. The need arises in design problems dealing with very high dimensions, which increase the computational burden of the design process because the sample space required for the design search varies exponentially with the dimensions. This work describes the application of a latent variable method called Genera...
متن کاملA Combined Latent Class and Trait Model for the Analysis and Visualization of Discrete Data
ÐWe present a general framework for data analysis and visualization by means of topographic organization and clustering. Imposing distributional assumptions on the assumed underlying latent factors makes the proposed model suitable for both visualization and clustering. The system noise will be modeled in parametric form, as a member of the exponential family of distributions and this allows us...
متن کامل